Focusing Annotation for Semantic Role Labeling
نویسندگان
چکیده
Annotation of data is a time-consuming process, but necessary for many state-of-the-art solutions to NLP tasks, including semantic role labeling (SRL). In this paper, we show that language models may be used to select sentences that are more useful to annotate. We simulate a situation where only a portion of the available data can be annotated, and compare language model based selection against a more typical baseline of randomly selected data. The data is ordered using an off-the-shelf language modeling toolkit. We show that the least probable sentences provide dramatic improved system performance over the baseline, especially when only a small portion of the data is annotated. In fact, the lion’s share of the performance can be attained by annotating only 10-20% of the data. This result holds for training a model based on new annotation, as well as when adding domain-specific annotation to a general corpus for domain adaptation.
منابع مشابه
The Semantics of Image Annotation
This paper presents a language for the semantic annotation of images, focusing on event types, their participants, and their spatial and orientational configurations. This language, ImageML, is a self-contained layered specification language, building on top of ISOspace, as well as some elements from Spatial Role Labeling and SpatialML. An annotation language characterizing such features surrou...
متن کاملSemEval-2007 Task 09: Multilevel Semantic Annotation of Catalan and Spanish
In this paper we describe SemEval-2007 task number 9 (Multilevel Semantic Annotation of Catalan and Spanish). In this task, we aim at evaluating and comparing automatic systems for the annotation of several semantic linguistic levels for Catalan and Spanish. Three semantic levels are considered: noun sense disambiguation, named entity recognition, and semantic role labeling.
متن کاملSemi-Supervised Semantic Role Labeling
Large scale annotated corpora are prerequisite to developing high-performance semantic role labeling systems. Unfortunately, such corpora are expensive to produce, limited in size, and may not be representative. Our work aims to reduce the annotation effort involved in creating resources for semantic role labeling via semi-supervised learning. Our algorithm augments a small number of manually l...
متن کاملSemi-supervised Semantic Role Labeling via Graph-Alignment
Semantic roles, which constitute a shallow form of meaning representation, have attracted increasing interest in recent years. Various applications have been shown to benefit from this level of semantic analysis, and a large number of publications has addressed the problem of semantic role labeling, i.e., the task of automatically identifying semantic roles in arbitrary sentences. A major limit...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014